Dan Higgins — April 2005
DRAFT
RExpression Actor

Introduction

The ‘RExpression’ actor has been created for inserting R commands and scripts
into Kepler workflows. This actor makes it easy to integrate the powerful data
manipulation and statistical functions of R into a workflows. The actor can be found
under the Mathematical Expressions node in the actor tree; its icon when dragged to the
graph window is shown below. Note that initially there are only two ports, both outputs,
called ‘graphicsFileName’ and ‘output’.

RExpressian

RExpression Actor

& Configure ports for RExpression - |EI |i|

Direction | Show Name | Hide Units
H v | | DEFALLT r r
H v | | DEFALILT r r
Caommit Ay | Add | Bemove | Help | Cancel

Initial Port Configuration for RExpression actor

This actor is designed to work much like the Ptolemy/Kepler ‘Expression’ actor.
With the Expression actor, one adds input ports and the names of these input ports can be
used in a mathematical expression, the value of which is sent to the output port. One also
adds input ports to the RExpression actor, and the name of those ports become named R
objects which can be used in the R script.

As an example, consider the simple workflow shown below where a SDF director
is added and the RExpression actor’s output port has been connected to a Display actor. If
you ‘Configure’ a RExpression actor, you can see that the default R script is just

2 + 2

Skipping the first few lines for the moment, one sees this command followed by the
result; i.e.

> 2 + 2
[1] 4

This is exactly what would appear if one was running the R system from the command
line.

[The first two lines, with ‘setwd...” and ‘jpeg...” are setup commands for R automatically
added by the actor.]

SDF Director
RExpression)
| =1y
File Help
> getwd (' C:/Documents and Settingadhicas
> Jpeg(filename = '1112308031165. jpg’',
- 2 4+ 2
[1] 4
>

g o

Now add 2 input ports as indicated below with the names ‘aaa’ and ‘bbb’ and set the R
script to:

aaa
bbb
aaa + bbb

If aaa and bbb were simple scalars, we would have simply duplicated the functionality
of the Expression actor. But the base data type of the R system is the ‘vector’ (which
corresponds to a Kepler ‘array’). Thus consider the example workflow below where 2
expression actors have been connected to the two input ports, aaa and bbb. It can be
seen the the result is an array with corresponding elements added together.

] Configure ports for RExpression

(=l

Type | Direction | Show Name | Hide Units

| Iv| | | DEFALLT r r

] Iv| || DEFALILT r r
aaa ¥ ™ |unknown [DEFAULT r r
bhb ¥ r [T |unknown [DEFALULT r r

Cormrnit | Apply | Ardd | Eemowve | Help | Cancel
SDF Director
Expression
RE=pressian)
Display

Expression2

File Help

=

=10l x|

> bbb
= aas
[1] 1 2 3
= hhb

[1] 4 5 &
> @aaa + bbb
[1] & 7 &
-

Kl

<- o4, 5, 6

;
]
i

Now change the RScript to

aaa

bbb

ccc <- aaa + bbb
barplot (ccc)

and connect the graphicsOutputFileName port to an ImageJ graphics display and you can
see a barplot created by R from the input data (see below).

SDF Director

Expressian
{1.2.3} RExpression
Expressionz -

File Help

=1o] x|

Image.

= bhh <- (4, 5, 6)
= aaa

[1] 1 2 3

> hbhh

[1] 4 5 &

= coo <- aaa + bbb
> harplot (ccoe)

-

Rl

i

240240 pivels; RGB; 224K

=10l x|

A somewhat more interesting example is shown in the workflow below (a simple
linear regression model). In this case, the input data comes from 2 output ports of the
‘Datos Meterologicos’ eml2DataSource actor. SequenceToArray actors are used to
convert the sequence of values to arrays. [Note that these converters are used because
otherwise one would need to tell the RExpression actor the length of each input

sequence.]| The RExpression script is

res <- 1m(BARO ~ T_AIR)
res

plot(T_AIR, BARO)
abline (res)

The resulting text and graphic output are also shown below:

Imaged

Sequence To Arrayd — »

RExpression

Display

]

=1o| x|

File Help

> setwd('C:/Documents and Settings/higgins'

> Jjpeg(filensme = '1112313785750.Jjpg',widch = 450, height = 450, point=ize = 1Z2,quality = 75, bg = 'ul
> T AIR <- ¢(15.0, 13.4, 13.4, 12.4, 11.7, 11.4, 11.5, 11.5, 12.2, 17.4, 20.1, 23.3, 23.1, 23.5, 23.5,
> BARO «<- c(953.4, 953.5, 954.0, 554.3, 954.5, 954.7, 954.5, 5954.5, 954.9, 953.7, 952.6, 951.7, 951.2,
> res <- lm(BARO ~ T AIR)

> res

_lol x|

Call: 480480 pixels; RGE; 900k
lm(fornmla = BARO ~ T ALIR)

Coefficients:

[Intercept) T _AIR
955.3772 -0.3244
o
[Lp]
> plot (T _AIR, BARD) [=2]
> shlinei(res)
B =t
o
{an]
0 ™
xS
=
na]
o
o
{en]
e
{Ip]
{an]
o
g T T T
10 15 20 25
T AR

Previous examples have all used numerical vectors as input. One can also input string
vectors as illustrated below where one input is a species list and the other is the count (i.e.
the number of individuals of the species found. In this case, the R script is

aaa <- split(cnt, factor (spp))

boxplot (aaa)
summary (aaal[[1]])
summary (aaal[2]])

Here the ‘factor’ and ‘split’ functions are used to summarize the results for each of the

two species.

Mol population abundance monitoring: Fall 2000 mid-marsh and creekbank infaunal and ep

Species

4 1112572486190.jpg

480x420 pixels; RGE; 900K

Image.J

RExpression Actor

Display

=

40 60 80 100 120
1 Il

20

(=[] [* .gce mollusc avg_by_spp. =lojx]

File Help
- setwd('C:/Documents and Settings/higgins') -
> jpeg(filensme = '1112572486190.jpg',width = 480, height = 480, pointsize = :_
> spp <- ci'Littoraria', 'Littoraria', 'Littoraria', 'Littoraria', 'Littoraries
> ¢nt <- ¢i0, 0, 0, 4, 0, 0o, o, 0, 3, i, i, 0, O, 0, O, O, 2, 1, O, O, 54, 11i%
> mas <- split(ent, factor(spp))
- haxplot (a&a)
> swanary (aaa[[11]1)

Min. 1st Qu. HNedian Mean 3rd Qu. Max.

0.00 0.00 0.00 1z.03 4.25 115.00
> sunmary (aaa[[2]1])

Hin. 1st Qu. HMedian Hean 3rd Qu. Hax.

0.00 0.00 0.00 2.35 0.z5 z1l.00

1
B <|{ooc o o o w oo o oo

Littararia Melampus

Inputs can also be simple strings or numbers. For example, one can reconfigure the
EML2DataSource to give a data table file name rather than a set of ports that give

sequences of column values. By doing this, the entire datafile can be passed to the R
engine and read as an R data frame. In this case, the R script is

datafile <- infile
df <- read.table(datafile, sep=",",header=TRUE)

pairs (df)
df

where infile isthe name of the single input port.

Datos Meteorologicos Image.

RExpressian

Display

=

This is an example of the RExpressions actor which is given a file name as
input. The file is read using "read.table” to create a data frame which

is then displayed as a "pairs" graph. Mote that the EML data source has

been configured to return a file name from the cache rather than a port for each
column.

JEIES |3 dororrame Rospay =TT

480x480 pixels; RGB; 900K

File Help
> setwd('C:/Documents and Sectings/higgins') e
> jpegifilensme = '1112573004836.]jpg',width = 450, height = 480, ¢
> infile <— Y"C:/Documents and Sectings/higoins/ . kepler/cache/cack
> datafile <- infile
> df <- read.table(datatfile,sep=\",\", headser=TRIE)
> pairs (df)
> df

DATE TIME T AIR RH DEW BARO WD W3 RAIN S50L S5OL_SUM
1 01i/01/01 00:00 15.0 99 14.5 953.4 99 0.8 a [u} u}
2 01/01/01 01:00 13.4 99 12.8 953.5 100 1.9 a a o
5 01/01/01 02:00 13.4 99 12.5 954.0 114 1.2 a [u} 1z0
E3 01/01/01 03:00 12.4 99 12.3 954.3 114 2.5 a a o
= 01/01/01 04:00 11.7 99 11.7 954.5 96 3.1 a [u} 1zo
£ 0i/01/01 05:00 11.4 99 11.2 954.7 &5 2.6 a a [n)
G 01/01/01 06:00 11.5 99 11.7 954.5 114 2.0 a [u} u}
=1 01/01/01 07:00 11.5 99 11.7 254.8 &3 2.8 a [u} u}
el 01/01/01 08:00 12.2 99 12.3 954.9 83 2.5 0 zoz 75840
10 01/01/01 09:00 17.4 92 15.6 953.7 336 0.1 0 442 1050120
11 01/01/01 10:00 20.1 83 16.7 952.6 322 0.0 0 716 1833360
1z 01/01/01 11:00 23.3 71 17.8 951.7 289 0.4 0 592 2499720
13 01/01/01 12:00 23.1 74 17.8 951.2 193 0.3 0 522 2867520
14 01/01/01 13:00 23.5 72 17.8 950.7 42 0.1 0 964 3241800
15 01/01/01 14:00 23.5 85 20.6 950.3 117 0.1 0 952 3456240
16 01/01/01 15:00 23.1 92 21.7 250.3 93 1.0 0 576 3259440
17I 01/01/01 16:00 20.0 99 19.5 950.6 iSE a.6 0 194 2609640
4 4

The RExpression actor can also be given a Kepler record token as an input as illustrated
below. [In this case, a record is created using the Record Assembler actor from a set of

three SequenceToArray actors. Ideally, the data source would create a Record directly.] It
is assumed here that the record is a collection of named arrays representing the columns
of a table. All the arrays need be the same length (but not the same data type). [If the
arrays are not the same length, the input is ignored.]

Image.)
Sequence To Array3 ~t h-
Record Assembler
RExpressian
Display

=

This is an example where sequences of emlDataSource data are converted to
arrays and the arrays are then combined using a Record Assembler. This creates
a record which is, in effect, a 3 column table. That record (table) is then

input to an RExpression actor where it is changed into an R dataframe. The

data frame is then summarized and displayed as a 'pairs’ plot.

One can also add output ports to the Rexpression actor. Just give the output port a
name that corresponds to an R variable. Consider the R script below and the workflow
that follows. An array is output to the XXX port and a string to YYY port.

df <- data.frame (T AIR, RH, BARO)
summary (df)

pairs (df)

XXX <- RH

YYY <- "This is a test!"

Sequence To Array3 \ h-

Display3

=]

Configure ports for RExpression o]
Type Direction Showy Marne I Hicle | Unit= I
DEFALLT r r
v | | DEFALLT r r
T_AIR v r [T nknown DEFAULT r r
FH v r [T brknown DEFAULT r r
EaR0 W r [T brknown DEFALLT r r
K r W [T brknown DEFALLT r r
WY r v [T bnknown DEFALLT r r
Cotnnit | Aty | Addd | FEmaVE | Help | Cancel |
| ~e " o - | Lanl - 1 pall hJ |
RH F’] .aaaa-R.Display2 0] x|

Fle Help

|{99, 99, 99, 99, 93, 99, 99, 99, 99, 92, 83, 71, 74, 7Z, &5, 92, 99, 99, 99,

b t}.aaaa-R.Display3 — | Ellil
File Help

F5.aaaa-R.Display
YWThiz iz a test!y™ File HElp

getwd ['C: fDocuments and Settings/higoins')

Jpeg(filename = '1112638598531, jpg' ,width = 480, height = 480, pointsize = 1
T_ATR «- c(l5.0, 13.4, 13.4, 12.4, 11.7, 11.4, 11.5, 11.5, 12.2, 17.4, 20.1,
FH <- c(d99, 99, 93, 99, 93, 99, 99, 33, 99, 92, &3, 71, 74, 72, &5, 92, 93,
BARO «<- c(953.4, 353.8, 954.0, 954.3, 954.5, 954.7, 954.8, 954.3, 954.9, 95
df <- data.frame(T_AIR, RH, BAR0)

summary (df)

T_AIR RH BAR0

Min. : G.%90 Min. 124,00 Min. 850, 2
lat Mu.:12.20 lat Qu.:81.50 1=t Qu.:952.0
Median :15.15 Median :99.00 Median :953.5
Nean le.06 Nean $87.08 Hean :953.2
Jrd Quw.:20.15 Srd Qu.:99.00 Jrd Qu.:954.4
Max. 24,40 Max. 95,00 Max. 955,58
pairs(df)

X2 <- FH

WYY <- 4"Thiz iz a test!\"

Some Technical Details

Note that when ports are added to the RExpression actor, there is no need to set
the port types. Input tokens are examined by the actor to automatically determine the type
(e.g. strings, doubles, integers, or arrays of strings, doubles, integers, or records).

R is called as a subprocess of Kepler with the input and output streams linked to
the Kepler ports. Java code is used to convert the Kepler input tokens to text that is
understandable by the R system (i.e R commands) and R objects are converted to text for
output.

The RExpression actor generates some R code automatically. Some of this is
inserted ahead of the script commands inserted by the user and some is inserted after the
user commands.

Basically, the commands inserted before the user’s R code just set up a jpeg
graphics device so that images can be displayed and are saved as files. A unique file
name, like 1112804966625. jpg (based on the system time) is generated each time the
actor is fired and saved in the user’s home directory. The R ‘setwd ()’ function is also
used to set the home directory as R’s working directory so that R can use the file without
having to include the entire file path.

Note that the user’s R script can always override these settings since those
commands are sent after these initial ones. If the user wants a different graphics device,
he/she can simply add the function to the script. (And any subsequent graphics function
always uses the last graphics device.) And R’s working directory can also be reset. Data
files can also be read from anywhere on the system by simply putting the absolute path
into the script.

There are also some additional R commands added after the user’s commands if
additional output ports have been added. (These commands are trimmed from the R
output and thus not displayed.) These commands use the R dput () function to output
results for output ports that can be converted to Kepler tokens.

